4 research outputs found

    Bayesian belief networks for dementia diagnosis and other applications: a comparison of hand-crafting and construction using a novel data driven technique

    Get PDF
    The Bayesian network (BN) formalism is a powerful representation for encoding domains characterised by uncertainty. However, before it can be used it must first be constructed, which is a major challenge for any real-life problem. There are two broad approaches, namely the hand-crafted approach, which relies on a human expert, and the data-driven approach, which relies on data. The former approach is useful, however issues such as human bias can introduce errors into the model. We have conducted a literature review of the expert-driven approach, and we have cherry-picked a number of common methods, and engineered a framework to assist non-BN experts with expert-driven construction of BNs. The latter construction approach uses algorithms to construct the model from a data set. However, construction from data is provably NP-hard. To solve this problem, approximate, heuristic algorithms have been proposed; in particular, algorithms that assume an order between the nodes, therefore reducing the search space. However, traditionally, this approach relies on an expert providing the order among the variables --- an expert may not always be available, or may be unable to provide the order. Nevertheless, if a good order is available, these order-based algorithms have demonstrated good performance. More recent approaches attempt to ``learn'' a good order then use the order-based algorithm to discover the structure. To eliminate the need for order information during construction, we propose a search in the entire space of Bayesian network structures --- we present a novel approach for carrying out this task, and we demonstrate its performance against existing algorithms that search in the entire space and the space of orders. Finally, we employ the hand-crafting framework to construct models for the task of diagnosis in a ``real-life'' medical domain, dementia diagnosis. We collect real dementia data from clinical practice, and we apply the data-driven algorithms developed to assess the concordance between the reference models developed by hand and the models derived from real clinical data

    Particle Swarm Optimisation for learning Bayesian Networks

    Get PDF
    This paper discusses the potential of Particle Swarm Optimisation (PSO) for inducing Bayesian Networks (BNs). Specifically, we detail two methods which adopt the search and score approach to BN learning. The two algorithms are similar in that they both use PSO as the search algorithm, and the K2 metric to score the resulting network. The difference lies in the way networks are constructed. The CONstruct And Repair (CONAR) algorithm generates structures, validates, and repairs if required, and the REstricted STructure (REST) algorithm, only permits valid structures to be developed. Initial experiments indicate that these approaches produce promising results when compared to other BN learning strategies

    Diagnosis of dementia and its pathologies using Bayesian belief networks

    No full text
    corecore